Ascend
Coding
Ascend
  • 🚀Introduction
  • VEX Robotics
    • 🛠️Building
      • 📏CAD Design
      • 🔧Best Practices
      • 🏎️Drive Trains
        • 🔩Screw Joints
        • 🥊Boxing
        • 🔵Bearing flats
        • 🛤️Fixing Friction
        • 🔥450 RPM on 2.75"
      • 🏍️Motors
      • 🪨Metal
      • Plastic
      • 🎈Pneumatics
      • ➕Additional Mechanisms
        • 🖨️3D Printing
        • ↔️Ratchets
        • 🏹Catapults
        • 🎣Intakes
        • 🏋️Lifts
    • 💻Coding
      • ⚖️Choosing Your Coding Environment
      • 🔴VEXCode Pro
        • 🖥️Getting Started
        • 🚗Drive Code
        • 🚴Coding Motors
        • 🌬️Coding Pneumatics
        • 🎛️Advanced
          • 📡Coding Autonomous
          • 📈Coding PIDs
            • ⬆️Drive PID Tutorial
            • ↩️Turn PID Tutorial
            • 🎸Tuning PIDs
              • 🔢Ziegler-Nichols Method
              • 📊Graphing PIDs
          • 📋Tasks
          • 🚝Advanced Drive Code
      • 🟡PROS
    • 📗Engineering Notebook
      • 📔Formatting
      • ⭐Notebook Walkthrough
      • 💠Decision Matrices
        • 📌Decision Point
      • ➕Additional Resources
    • 🏆Tournaments
      • 🗣️Team Interviews
        • 🪙Interview Tips
        • ⛳Interview Scoring
        • 🤽‍♀️Interview Practice Questions
      • 🤹Skills
      • ℹ️Ranking and Stats
      • 📷Filming Matches
  • Other
    • 🧑‍💼Management
      • 🕑Time Management
      • 👨‍👩‍👧‍👦Team Management
        • 👮Delegation
        • ⚓Optimal Team Size
      • 🖇️Code Management (GitHub)
      • 🚋Resource Management
      • ⁉️Stuck?
    • 🍎Physics
      • ⚙️Torque
      • 😑Stress Forces
    • 👾Extra stuff
      • 📸96504 Gallery
      • ⛑️VEX Team Resources (High Stakes)
      • 🏎️Driving Simulator
Powered by GitBook
On this page

Was this helpful?

  1. VEX Robotics
  2. Building
  3. Drive Trains

Bearing flats

PreviousBoxingNextFixing Friction

Last updated 1 year ago

Was this helpful?

It turns out that the square holes in vex metal pieces aren't a great fit for a rotating axle. Yes, they technically work, but the axle is highly unstable, and the friction is egregious.

The solution? Bearing flats! Bearing flats are essential for having low-friction drivetrains, and also for other mechanisms on the robot. They keep shafts aligned to the center of the hole, preventing it from touching the metal (which adds friction) or wobbling.

Bearing flats should be used on either side of an axle to support it and reduce friction. However, a motor also supports the axle, so there is no need for a bearing flat right next to a motor:

On the drivetrain, bearing flats should be used for both axle and screw joints (as possible), since they do reduce friction. For example, in the drivetrain below, the motor shafts have one bearing flat on the outside to keep the motor axle stable.

🛠️
🏎️
🔵
Note the shape of the hole in the metal
Note the zip ties. Yes, this works, and it works well!